This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

NMR STUDY OF PHOSPHORUS-CARBON AND PHOSPHORUS-NITROGEN BONDS IN ALKYL-AND MONO-N-SUBSTITUTED AMINOTRIARYLPHOSPHONIUM SALTS

Gurdial Singha

^a Pioneering Research Laboratory, Experimental Station, E. I. Du Pont de Nemours & Company, Wilmington, Delaware

To cite this Article Singh, Gurdial(1994) 'NMR STUDY OF PHOSPHORUS-CARBON AND PHOSPHORUS-NITROGEN BONDS IN ALKYL-AND MONO-N-SUBSTITUTED AMINOTRIARYLPHOSPHONIUM SALTS', Phosphorus, Sulfur, and Silicon and the Related Elements, 97: 1, 125-139

To link to this Article: DOI: 10.1080/10426509408020735 URL: http://dx.doi.org/10.1080/10426509408020735

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NMR STUDY OF PHOSPHORUS-CARBON AND PHOSPHORUS-NITROGEN BONDS IN ALKYL- AND MONO-N-SUBSTITUTED AMINOTRIARYLPHOSPHONIUM SALTS¹

GURDIAL SINGH

Pioneering Research Laboratory, Experimental Station, E. I. Du Pont de Nemours & Company, Wilmington, Delaware 19880

(Received July 27, 1994; in final form September 16, 1994)

¹H, ¹³C, and ³¹P NMR spectra of a series of alkyltriarylphosphonium salts, $(p\text{-}XC_cH_4)_3$ PR I⁻ (R = Me, CH₂CMe₃, and CH₂SiMe₃; X = H, Me, OMe, and NMe₂) are reported. Their chemical shifts and coupling constants, ¹J_{PC} and ²J_{PH}, are rationalized in terms of hyperconjugative π bonding between the α C—H bonds and 3d orbitals of phosphorus. NMR including ¹⁵N spectra of Ph₃PNHR BF₄, where R = H, Me, CMe₃, NH₂, and NMe₂, have also been determined. Relative changes in their parameters are discussed in the light of interaction between the lone pair of nitrogen and d orbitals of phosphorus, and compared vs. those due to hyperconjugative π bonding in the alkyltriarylphosphonium salts. Temperature effects on their spectra are reported and interpreted in terms of changes in bonding around phosphorus as a result of inversion at the α nitrogen.

Key words: Phosphorus-carbon, phosphorus-nitrogen, X-ray, NMR, phosphonium salts.

INTRODUCTION

Although several NMR studies of alkylphosphonium salts have been reported, $^{2-6}$ 1 H, 13 C, and 31 P chemical shifts and their coupling constants, $^{1}J_{PC}$ and $^{2}J_{PH}$, have not been fully understood in terms of bonding. Especially the role of hyperconjugative interaction of their α C—H bonds with the 3d orbitals has not been explored. Such an interaction would imply ylid $(1a \leftrightarrow 1b)$ as one of the contributing structures:

The difficulty has been that even in free ylids the question of bonding is not yet settled. The only agreement is that phosphonium cation stabilizes the negative charge on the ylid carbon using its $3d_{xy}$ or $3d_{xz}$ orbitals.⁷ Ylids have been conventionally represented as a hybrid of polar and hon-polar structures. The non-polar structure involves $p\pi$ - $d\pi$ bonding, requiring change in hybridization of phosphorus from sp^3 to sp^3d . However, Dixon⁸ has recently concluded from ab initio calculations that the ylid structure is essentially polar, in which the negative charge on its carbon is stabilized by 'back-bonding' to the 3d orbitals of phosphorus or σ^* orbitals of P—R bonds.

In the absence of any theoretical work, NMR data of alkylphosphonium salts would help in understanding their bonding. In this paper, we report such a study using the following phosphonium salts:

$$(p-XC_6H_4)_3\dot{P}$$
—R I⁻ R = CH₃, CH₂C(CH₃)₃, and CH₂Si(CH₃)₃
X = H, CH₃, OCH₃, and N(CH₃)₂

The p-substituents on the phenyl rings provide a sensitive electronic probe to monitor changes in the NMR parameters, resulting from the changes in bonding around phosphorus. In addition, NMR spectra of a series of mono-substituted aminophosphonium salts:

$$Ph_3P$$
—NHR BF_4^- R = H, CH_3 , $C(CH_3)_3$, NH_2 , $N(CH_3)_2$

have been determined for comparison with those of the alkylphosphonium salts.

RESULTS AND DISCUSSION

Alkyltriphenylphosphonium Salts

In Table I are listed the pertinent ¹H, ¹³C, and ³¹P NMR spectral data of some alkyltriphenylphosphonium salts. We will discuss these data first relative to what has been described in the literature.

The α carbon is deshielded with increasing substitution on the α or β carbon. This deshielding is primarily a result of the substitution as it also occurs in the corresponding alkanes. A plot of the α ¹³C chemical shifts in alkyltriphenylphosphonium salts vs. those in the corresponding alkanes is shown in Figure 1. Its slope

Carbon-13 a Protons P-C (Alk) P-C (Ar) ²J_{PH} δ_{H} δ_{31°P}, ppm R J, Hz δ, ppm δ, ppm J, Hz Hz ppm CH₃ 3.16 13.2 22.10, 21.1ª 11.5, 11.4a 57.4, 57.12 118.69, 118.8ª 88.5, 88.6ª 12.2 26.53 17.03 117.16 CH2CH3b 3.66 50.6 83.7 CH(CH₃)₂c 31.3ª 21.5ª 47.0ª 117.5ª 83.1a C(CH₃)₃ 35.6ª 35.3ª 42.5ª 117.1a 80.1ª CH2CH2CH3 3.59 12.5 24.30, 24.18 24.17 48.2 117.27 90.1 CH2CH(CH3)2 3.56 12.8 23.45 30.83 46.5 118.36 86.2 CH₂C(CH₃)₃ 3.82 12.9 20.0 35.6 44.5 120.25 84.5

TABLE I

1H, 13C, and 31P NMR data of (C₆H₅)₃PR I

a Data from ref. 5.

^b CH₃ : $\delta_{H} = 1.40$ ppm ; ${}^{3}J_{PH} = 19.6$ Hz ; ${}^{3}J_{HH} = 7.4$ Hz; $\delta_{C} = 6.37$ ppm; ${}^{2}J_{PC} = 3.8$ Hz.

c Phosphonium bromide.

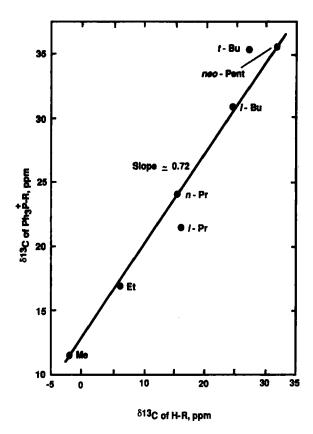


FIGURE 1 Plot of 13 C chemical shifts of the carbons directly bonded to phosphorus in $(C_6H_5)_3\dot{P}$ —R X^- vs. those in the corresponding alkanes, H-R (from Reference 9).

TABLE II

⁴H and ³¹P NMR data of (p-XC₆H₄)₃PR I

No.						
	R	x	δ _H ppm	²J _{PH} Hz	J _{13C—H}	δ _{31p} ppm
6	CH ₃	Н	3.16	13.2	134.0	22.10
7	.,	CH ₃	3.01	13.2	133.6	20.85
8		OCH,	2.92	13.1	133.4	19.37
9		$N(CH_3)_2$	2.54	13.0	132.5	16.49
10	$CH_2C(CH_3)_3$	н` ""	3.82	12.9	128.0	19.95
11	2 (3/3	CH ₃	3.63	12.9	127.4	18.95
12		осн,	3.50	12.8	_	17.67
13		$N(CH_3)_2$	3.02	12.8	126.2	15.12
14	CH ₂ Si(CH ₃) ₃	н` ‴-	3.14	18.4	а	24.85
15	2 \ .//.	CH ₃	2.97	18.2	a	23.68
16		OCH ₃	2.88	18.1	a	22.11
17		$N(CH_3)_2$	2.37	17.7	a	19.17

[&]quot;Coupling not observed due to interference from absorptions of the phosphonium salts hydrolysis products, $(p-XC_0H_4)_3\dot{P}CH_3$ I⁻.

of less than 1.0 indicates that the presence of quaternary phosphorus actually has a shielding effect on the α carbon, presumably due to hyperconjugative interaction. The isopropyl carbon is more shielded because its secondary structure would result in more effective hyperconjugative π bonding with phosphorus. The t-butyl carbon, on the other hand, is deshielded as it has no α C—H bond to participate in hyperconjugation. Typically, olefinic carbons (sp^2) are deshielded relative to those of their saturated analogs. However, the ylid carbon of Ph₃P—CH₂ is more shielded than its phosphonium salt. This is obviously due to the polar nature of the ylid bond, which concentrates the negative charge preferentially on the α carbon. Lumbroso et al. have estimated from dipole moment measurements that the above ylid has 55% ionic character in its PC bond.

The phosphorus atom of ylids is also usually more shielded than that of the corresponding phosphonium salts, 14 as it can receive electrons from the negative carbon through its d orbitals. Therefore, hyperconjugative π bonding in alkylphosphonium salts should also provide shielding to phosphorus. On the contrary, as the hyperconjugative interaction increases with substitution at the α carbon, i.e., $R = CH_3$, C_2H_5 , and $CH(CH_3)_2$, phosphorus gets deshielded (Table I). Schweizer and co-workers have attributed this to the steric effect of the alkyl groups. But when substitution occurs at the β carbon, phosphorus gets more shielded, probably due to the hyperconjugative interaction being stronger than the steric effect.

In (trimethylsilyl)methylphosphonium salts, phosphorus is strongly deshielded vs. that in the corresponding neopentylphosphonium salts (Table II). This is either due to the steric bulk of Me₃SiCH₂ vs. Me₃CCH₂, or the electron withdrawing effect resulting from $p\pi(C)$ - $p\pi(Si)$ bonding shown by the contributing structure 2c below:

Relationship between ${}^{1}J_{PC}$ (or ${}^{1}J_{PN}$) and ${}^{2}J_{PH}$

In organometallic systems, linear relationships have been shown between ${}^{1}J_{MC}$ and ${}^{2}J_{MH}$, where M = 117,119 Sn, 207 Pb, 199 Hg, 195 Pt, etc. 15 Such relationships are actually expected from the Fermi contact term of these coupling constants; a simplified version of which can be written for ${}^{1}J_{PC}$ as follows 16 :

$${}^{1}J_{MC}{}^{\alpha}\gamma_{M}\gamma_{C}\alpha_{MC}^{2}\alpha_{CM}^{2}\left(\frac{Z_{M}^{*}}{n_{M}}\right)^{3}\left(\frac{Z_{C}^{*}}{n_{C}}\right)^{3}\Delta E^{-1}$$
 (1)

where γ 's are nuclear magnetogyric ratios, α_{MC}^2 and α_{CM}^2 are the fractional s characters of the orbitals of M and C, respectively, and Z_M^* and Z_C^* are their effective

nuclear charges, n is the quantum number of the period to which the atom belongs, and ΔE is the average energy approximation term. A similar expression can be written for ${}^2J_{\rm PH}$; and it can be shown from these equations that, when Fermi contact is the main mechanism of coupling, a plot of ${}^1J_{\rm MC}$ vs. ${}^2J_{\rm MH}$ passes through the origin. No such relationship, however, is apparent between ${}^1J_{\rm PC}$ and ${}^2J_{\rm PH}$ of the alkylphosphonium salts. While ${}^1J_{\rm PC}$ values in the methyl and neopentyl phosphonium salts change significantly (Table III), their ${}^2J_{\rm PH}$ remain practically unchanged in each series (Table II). On the other hand, in mono-N-substituted aminotriphenylphosphonium salts, ${}^1J_{\rm PN}$ and ${}^2J_{\rm PH}$ (data of 18, 19, and 22 in CDCl₃, see Table IV) show an approximate linear relationship which, on extrapolation, passes through the origin indicating that Fermi contact is the main mechanism of their coupling.

The failure of a similar relationship in alkylphosphonium salts can be explained from the hyperconjugative π bonding. Such bonding decreases the s character of the P—C bond due to change in hybridization of the phosphorus atom from sp^3 to sp^3d . Further, it would favor more p character in the α C—H bonds. Both these hybridizational changes would have opposite effect on $^2J_{\rm PH}^{17}$; and, consequently, cancel each other in the methyl and neopentyl phosphonium salts. As hyperconjugative π bonding decreases with electron donating p-substituents on the phenyl rings (vide infra), the s character of the P—C bond increases resulting in the corresponding increase in $^1J_{\rm PC}$ values.

In (trimethylsilyl)methylphosphonium salts, there is discernible decrease in $^2J_{PH}$ with electron donating p-substituents on the phenyl rings, suggesting that the effect of change in hybridization at the α carbon is more dominant than that at the phosphorus atom. Further, their $^2J_{PH}$ values are much larger (18.4–17.7 Hz) than those of the corresponding neopentylphosphonium salts (\sim 12.8 Hz). Actually, they

TABLE III

13C and ²⁹Si NMR data of (p-XC₆H₄)₃PR I

												-	₩			
		Substituent		8, ppm		J, Hz		δ, ppup				J, Hz				
No.	R	х	gC bbur	Cı	C ₂	C ₃	PC ₁	PC ₂	PC ₃	C4	C ₅	C ₆	C ₇	PC ₄	PC ₅	PC ₆
6	CH ₃	н		11.52	-		57.4		_	118.69	133.21	130.53	135.25	88.5	10.9	12.8
6 7 8 9		CH ₃	21.88	11.69	_		58.3			115.66	133.01	131.14	146.32	90.8	10.9	13.1
8		OCH ₃	56.25	12.34	_	-	59.6			109.78	135.06	116.25	164.65	97.0	12.3	14.0
2		N(CH ₃) ₂	40.04	12,27	-	-	62.0	-		102.98	133.79	112.30	153.46	101.3	12.1	13.6
10	1 2 3 CH ₂ C(CH ₃)	н	-	35.56	33.15	31.88	44.5	4.9	7.3	120.25	133.87	130.40	134.78	84.5	10.0	12.4
IJ		CH ₃	21.59	35.44	32.82	31.71	46.6	4.6	7.1	116.28	133.49	130.91	145.81	86.6	10.3	13.0
12		OCH ₃	55.91	35.54	32.38	31.32	48.8	-4.9	~6.1	109.67	135.12	115.63	163.90	92.8	11.6	13.4
13		N(CH ₃) ₂	40.05	36.64	32.03	31.41	52.7	4.4	6.7	102.70	134.30	111.94	153.02	97.6	12.4	13.3
					29 _{Si}			PSi								
14	CH2SI(CH3)3	H	••	10.15	3.31	0.81	44.7	5.8	b	120.86	•	130.34	134.81	86.4		12.6
15		CH ₃	21.93	10.46	3.09	0.84	44.6	5.9	ь	117.86	133.18	130.99	145.85	90.1	9.9	12.4
15 16		OCH ₃	56.18	11.27	2.83	0.82	47.6	5.7	ь	111.82	135.25	115.96	164.25	95.2	12.1	14.3
17		N(CH ₃) ₂	40.05	11.71	2.21	0.80	50.0	5.6	b	104.80	133.88	112.03	153.17	100.5	12.0	13.9

^{*} Absorptions overlapped those of its hydrolysis product, PbsPCH3 Γ .

b No coupling was observed.

TABLE IV

1H, 13C, 15N, and 31P NMR data of Ph₃PNHR BF₄

		a Protons												
		Temp	δ _H	^{2j} PH	831p		8, 1	pm			J, Hz		Nitrogen-	-15
No.	R	°C ́	ppm	Hz	ppm	C ₄	Cs	C ₆	C7	PC ₄	PC ₅	PC ₆	δ, ppm²	JpN, Hz
18	н	30	5.61	3.5	37.01	122.79	133.09	129.68	134.54	103.5	11.9	13.7	-354.00	0.0
_		-50	5.61	3.5	37.63	122.19	132.82	129.50	134.49	103.5	11.9	13.7		•••
19	СН3р	30	5.49	8.6	40.27	120.54	133.27	130.14	135.07	103.2	11.0	13.4	-365.87	6.1
^		-50	5.35	11.0	40.51	119.63	133.07	129.93	135.09	103.5	11.0	13.7		
20	2,3 C(CH ₃)3 ^c	30	5.41	7.2	32.40	122.59	133.54	129.86	134.74	102.6	11.0	13.7	-326.96	đ
-		-50	5.32	8.2	32.45	121.75	133.23	129.70	134.67	102.6	11.0	13.7	***	
21	NH2 ^c	30	7.09	25.8	40.39	120.19	133.78	129.89	135.13	103.5	11.0	13.7	f, (-330.36) ^g	f, (4.3) ⁸
~		-50	6.94	31.1	40.92	119.41	133.59	129.79	135.17	104.4	11.9	13.7		
2 2	N(CH ₃) ₂ h	30	6.94	35.0	34.92	120.43	133.99	129.78	135.15	104.4	11.0	13.8	-293.71, (-291.22)	11.3, (6.1) ⁸
~		-50	6.79	36.3	35.27	119.46	133.74	129.66	135.14	104.4	11.0	12.8		

Prom external reference of NH₄ NO₃ (15N).

are the largest ${}^2J_{PH}$ observed for any phosphonium salt of Ph₃PCH₂R structure. This is probably because of the change in hybridization of the α C—H bonds due to the silicon atom.

Relationship between ²J_{PC} and ²J_{PH}

Weigert and Roberts²³ related two-bond phosphorus-carbon and phosphorus-proton coupling constants in alkylphosphonium salts by:

$$^2J_{\rm PC} = \alpha ^2J_{\rm PH} \tag{2}$$

where α is a constant. Equation 2 was derived from equations similar to Equation 1 written for ${}^2J_{\rm PH}$ and ${}^2J_{\rm PC}$. The average energy approximation usually holds for hydrocarbons, and $\alpha=0.3$, 0.4, and 0.61 for sp^3 , sp^2 , and sp hybridized carbons, respectively. This also appears to apply to alkylphosphonium salts. For example, the α value for ${\rm Ph}_3\dot{\rm PC}_2{\rm H}_5$ I is 0.31, which is consistent with the essentially single bond between phosphorus and carbon. On the other hand, the α values for the neopentylphosphonium salts, calculated from the ${}^2J_{\rm PH}$ and ${}^2J_{\rm PC}$ data given in Tables II and III, range from 0.34 to 0.38, indicating partial double bond character of their PC bonds. In (trimethylsilyl)methylphosphonium salts, where α corresponds to the ${}^2J_{\rm PSi}/{}^2J_{\rm PH}$ ratio, its values are \sim 0.32.

The X-ray structure of neopentyltriphenylphosphonium iodide shows the cation to exist in two independent ion pairs in the asymmetric unit (Figure 2) with PCC angles of 120.3° and 124° (Table II), indicating a strong steric effect of the neopentyl

 $^{^{}b}$ δ_{C} = 26.33 ppm ; $^{2}J_{PC}\cong0.0$ Hz.

 $δ_{C(2)} = 56.30 \text{ ppm}; {}^{2}J_{PC} \cong 0.0 \text{ Hz. } δ_{C(3)} = 31.77 \text{ ppm}; {}^{3}J_{PC} = 3.7 \text{ Hz.}$

d Broad, unresolved peak.

^e Spectra recorded on ~0.02M solution (CDCl₃). $\delta_N = (-324.89 \text{ ppm})^g$; $^2J_{PN} = (14.0 \text{ Hz})^g$.

f Not determined in CDCl3 because of very low solubility.

⁸ Values in parentheses are in DMSO-d₆ solutions (-0.5M).

h $\delta C = 49.00 \text{ ppm}$; $^{3}J_{PC} = 4.6 \text{ Hz}$. $\delta_{N} = (-310.99 \text{ ppm})\text{s}$; $^{2}J_{PN} = (14.7 \text{ Hz})\text{s}$.

FIGURE 2 ORTEP drawing of $(C_0H_5)_3\dot{P}$ — $CH_2C(CH_3)_3$ I with numbering of atoms.

group on the hybridization of its α carbon. These angles ($\sim sp^2$) would impart more p character to the C—H bonds, or reduce their s character (see 13 C—H coupling constants 21 in Table II), thereby resulting in more effective hyperconjugative π bonding in the neopentyl vs. methyl phosphonium salts. 25 the PC bond of Ph₃P—CH₂CMe₃ I⁻ is still longer, 1.822 Å and 1.787 Å, than that of Ph₃P—CH₃ I⁻ (1.786 Å) 27 ; obviously due to the steric effect of the neopentyl group.

p-Substituted Triarylphosphonium Salts

In these compounds both phosphorus and the directly bonded carbon are more shielded with the electron donating p-substituents on the phenyl rings: NMe₂ > OMe > Me > H (Tables II and III). Linear relationships are shown between ³¹P chemical shifts and Hammett's substituent constants, σ_p (Figure 3). The alkyl carbon, on the other hand, gets deshielded. Consequently, with electron donating substituents on the phenyl rings, the hyperconjugative π bonding decreases, resulting in the deshielding of the alkyl α carbon. Furthermore, both ${}^1J_{PC_{Alk}}$ and ${}^1J_{PC_{Alk}}$ increase with the decrease in the π bonding, presumably due to the increase in the s character of the phosphorus orbitals bonding to the alkyl as well as aryl carbons. Actually, linear relationships exist between these coupling constants (Figure 4). The slope of the neopentyl line is about twice that of methyl series, obviously due to the stronger hyperconjugative π interaction in the neopentyl compounds and, therefore, more pronounced effect of the substituents. The situation in (trimethylsilyl)methylphosphonium salts is intermediate between the neopentyl and methyl salts.

Another effect of the change in bonding around phosphorus is on the 13 C chemical shifts of the aryl carbons directly bonded to phorphorus. For example, the directly-bonded aryl carbons of $Ph_3\dot{P}CH_3$ I are more shielded than that of $Ph_3\dot{P}-CH_2CMe_3$ I. Consequently, due to less hyperconjugative π interaction in the methyl salt, its phosphorus is more positive and, therefore, resonance structures like 3a make a greater contribution than in the neopentyl salt. The partial negative charge on the directly bonded aryl carbon results in its shielding.

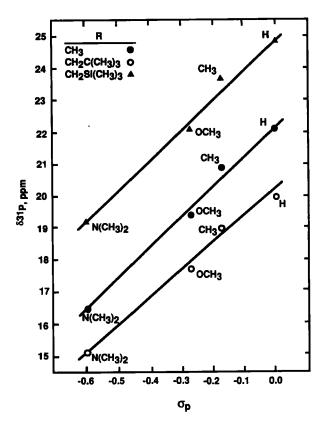


FIGURE 3 Plots of ³¹P chemical shifts vs. Hammett's substituent constants (σ_p) in $(p-XC_6H_4)_3\dot{P}-R$

Mono-N-substituted Aminotriphenylphosphonium Tetrafluoroborates

Their NMR data are listed in Table IV. Tetrafluoroborates were used instead of halides to avoid any complication due to hydrogen bonding between NH and the anions.²⁸ It is known from phosphorus-nitrogen bond measurements that the nitrogen lone pair of aminophosphonium salts has considerable overlap with the 3d orbitals of phosphorus,²⁹

$$\Rightarrow P - N - R$$

$$\Rightarrow P = N \setminus R$$

$$4$$

$$4$$

$$4a$$

which would make the nitrogen more planar in the ground state. It appears from the ${}^2J_{\rm PH}$ data that the planarity of α nitrogen and, hence, its lone pair interaction

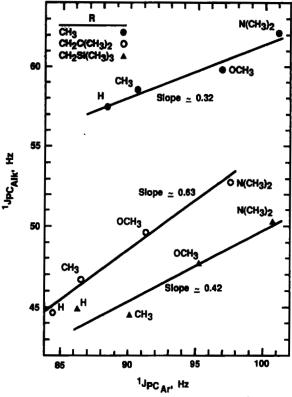


FIGURE 4 Plots of $^{1}J_{PC_{Alk}}$ vs. $^{1}J_{PC_{Ar}}$ in $(p-XC_{6}H_{4})_{3}\overset{+}{P}-R$ I⁻.

with the d orbitals of phosphorus increase in the order: $P = H > t\text{-Bu} > \text{Me} > \text{NH}_2 > \text{NMe}_2$. With more pyramidal α nitrogen, i.e., less s or more p character in the N—H bonds, $^2J_{\text{PH}}$ increases, presumably more in the negative direction, in a fashion very similar to $^2J_{\text{PH}}$ in alkylphosphonium salts with the decrease in the s character of their C—H bonds. 17 $^1J_{\text{PN}}$ increases roughly in the same order as $^2J_{\text{PH}}$. Phosphorus gets deshielded as it becomes more positive due to the decrease in p π -d π interaction. The aryl carbons directly bonded to phosphorus, on the other hand, are more shielded on account of greater contributions by structures like 5a.

The phosphorus-nitrogen coupling, ${}^{1}J_{PN}$, shows high sensitivity toward solvent. For example, its values decrease in DMSO-d₆ vs. those in CDCl₃. Presumably, DMSO-d₆ forms a hydrogen bond with the NH proton, thus facilitating an even stronger interaction between the nitrogen lone pair and the d orbitals of phosphorus:

 $^2J_{\rm PH}$ also shows temperature dependence, giving higher values at -50° vs. 30° C. This is probably due to the relative inversion at the α nitrogen affecting the lone pair interaction with the d orbitals of phosphorus. The inversion barrier for acyclic amines are 6 to 7 kcal. 30 The conformational stereochemistry of acyclic hydrazines and the barriers to inversion at their nitrogens have been studied quite extensively. $^{31-33}$ Their inversion barriers are much larger than those of the corresponding amines because of the lone pair interactions on the adjacent nitrogen atoms. The preferred conformation is that in which the dihedral angles containing the lone pairs are near perpendicular to each other. As a result, the nitrogens prefer to be

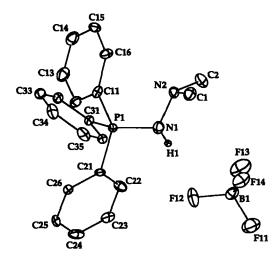


FIGURE 5 ORTEP drawing of $(C_6H_5)_3^+$ —NHN(CH₃)₂ BF₄ with numbering of atoms.

TABLE V
Selected bond distances and bond angles for 10^a

	Bond Di	istance, Å	
C(1)-C(2)	1.571 (15)	C (6) - C (7)	1.566 (18)
P(1)-C(1)	1.822 (13)	P(2) - C(6)	1.787 (11)
P(1) - C(11)	1.793 (11)	P(2) - C(41)	1.798 (14)
P(1)-C(21)	1.768 (13)	P(2) - C(51)	1.800 (12)
P(1)-C(31)	1.808 (11)	P(2) - C(61)	1.785 (13)
	Bond An	gles, deg	
P(1)-C(1)-C(2)	120.3 (8)	P(2) - C(6) - C(7)	124.0 (1)
C(1)-P(1)-C(11)	111.5 (5)	C (6) - P (2) - C (41)	114.3 (5)
C(1)-P(1)-C(21)	112.6 (6)	C(6)-P(2)-C(51)	105.9 (6)
C(1)-P(1)-C(31)	107.1 (6)	C (6) - P (2) - C (61)	110.5 (6)
C(11)-P(1)-C(21)	109.5 (5)	C (41) - P (2) - C (51)	107.2 (5)
C(11)-P(1)-C(31)	108.9 (5)	C (41) - P (2) - C (61)	109.5 (5)
C(21)-P(1)-C(31)	107.0 (5)	C (51) - P (2) - C (61)	109.2 (5)

^a Esd's in units of the least significant figure are in parentheses.

TABLE VI								
Selected bond	distances	and bond	angles	for	22ª			

	Bond Dista	nce, Å	
P(1)-N(1)	1.621 (5)	N (1) - N (2)	1.418 (7)
P(1)-C(11)	1.793 (6)	N (1) - H (1)	0.660 (46)
P(1)-C(21)	1.788 (5)	N(2)-C(1)	1.464 (8)
P(1)-C(31)	1.796 (5)	N (2) - C (2)	1.457 (9)
	Bond Angle	s, deg	
P(1)-N(1)-N(2)	114.5 (4)	N(1)-P(1)-C(11)	110.3 (3)
P(1)-N(1)-H(1)	120 (5)	N(1)-P(1)-C(21)	106.9 (3)
N(2)-N(1)-H(1)	121 (5)	N(1)-P(1)-C(31)	112.7 (3)
C(11)-P(1)-C(21)	108.9 (3)	N(1)-N(2)-C(1)	111.3 (5)
C(11)-P(1)-C(31)	108.6 (3)	N(1)-N(2)-C(2)	109.4 (5)
C (21) - P (1) - C (31)	109.4 (3)	C(1)-N(2)-C(2)	111.8 (5)
	Intermolecular D	ristances, Å	
	F (12) · · · N (1)	3.049 (14)	
	F (13) · · · N (1)	3.237 (12)	

² Esd's in units of the least significant figure are in parentheses.

pyramidal, which would account for much larger ${}^2J_{PH}$ for the hydrazinophosphonium salts (21 and 22) vs. the aminophosphonium salts (18, 19, and 20).

From the NMR data, the α nitrogen of 2,2-dimethylhydrazinotriphenylphosphonium tetrafluoroborate (22) appears to be more pyramidal than that of the other salts in Table IV. Its X-ray structure is shown in Figure 5. The pertinent bond distances and bond angles are listed in Table VI. The bond angles, however, show its α nitrogen to be nearly planar. Nevertheless, in solution, the lone pair interactions combined with rotation around the N—N bond would render the α nitrogen more pyramidal.

CONCLUSIONS

The 1H , ^{13}C , and ^{31}P NMR data of alkyltriarylphosphonium salts have been rationalized in terms of hyperconjugative π bonding between the α C—H bonds and ^{3}d orbitals of phosphorus. The NMR data of mono-N-substituted aminotriphenylphosphonium salts are consistent with the nitrogen lone pair interaction with the d orbitals of phosphorus. The trends of their data are similar to those of the alkylphosphonium salts. This is taken as a strong support for the hyperconjugative π bonding in the alkylphosphonium salts.

EXPERIMENTAL

NMR Spectra

¹H, ¹²C (75.46 Mz), and ³¹P (121.47 MHz) NMR spectra of alkyltriarylphosphonium salts were recorded on ~0.5 M solutions in CDCl₃ using a Nicolet NT-300 spectrometer. A broad-based noise decoupler

was used to eliminate ³¹P—¹H, ¹³C—¹H, and ²⁹Si—¹H couplings. The ¹H, ¹³C, and ²⁹Si chemical shifts are downfield from internal Me₄Si; and the ³¹P chemical shifts are downfield from external reference of 85% H₂PO₄.

¹H. ¹³C (100.577 MHz), and ³¹P (161.903 MHz) NMR spectra of mono-N-substituted aminotriphenylphosphonium salts were recorded on Varian 400 MHz spectrometer using 0.05 M solutions in CDCl₃, unless mentioned otherwise. Their ¹⁵N (30.484 MHz) NMR spectra were recorded on a GE omega 300WB spectrometer. The ¹⁵N DEPT experiments were run using the standard DEPT sequence³⁴ assuming $J_{HN} \approx 82-92$ Hz for directly bonded protons on nitrogen and $J_{HN} \approx 7$ Hz for nitrogen with the methyl groups with a θ pulse of 45°.

Preparation of Methyltriarylphosphonium Iodides (6-9)

Methyltriphenylphosphonium iodide (6) was purchased from Aldrich Chemical Co., Inc. Other methylphosphonium salts were prepared by the following procedure: To 0.01 mol of triarylphosphine was added 10 mL of freshly distilled CH_3I and the mixture was refluxed under N_2 for 5 min. About 50 mL of ethyl acetate was added to complete the precipitation of the phosphonium salts, which were then collected by filtration; >90% yield. Analytical samples were prepared by recrystallization from chloroform/ethyl acetate.

Methyl-tris(p-toluylphenyl)phosphonium iodide (7): mp 187–8°C (dec). Its ¹H NMR: δ 7.65–7.36 (m, 12H), 3.01 (d, ${}^2J_{PH}$ = 13.2 Hz, 3H), 2.49 (s, 9H). Anal. Calcd for C₂₂H₂₄IP: C, 59.19; H, 5.38. Found: C, 59.25; H, 5.18.

Methyl-tris(p-methoxyphenyl)phosphonium iodide (8): mp 219–20°C (dec). Its ¹H NMR: δ 7.65–7.08 (m, 12H), 2.92 (d, ²J_{PH} = 13.1 Hz, 3H), 3.92 (s, 9H). Anal. Calcd for C₂₂H₂₄IO₃P: C, 53.44; H, 4.86. Found: C, 53.19; H, 4.61.

Methyl-tris(p-dimethylaminophenyl)phosphonium iodide (9): mp 289–90°C (dec). Its 1 H NMR: δ 7.40–6.75 (m, 12H), 2.54 (d, 2 J_{PH} = 13.0 Hz, 3H), 3.07 (s, 18H), Anal. Calcd for C₂₅H₃₃IN₃P: C, 56.28; H, 6.19. Found: C, 56.23; H, 6.29.

Ethyl-. n-Propyl, and Isobutyltriphenylphosphonium Iodides

Ethyltriphenylphosphonium was purchased from Alpha[®]. n-Propyl- and isobutyltriphenylphosphonium iodides were prepared as follows: A mixture of 26.2 g (0.1 mol) of triphenylphosphine and 40 mL of freshly distilled n-propyl iodide or isobutyl iodide was refluxed under N_2 for 2 h. The phosphonium salts separated as solids. The excess iodide was bulb-to-bulb distilled in vacuo, and the remaining solid washed with ethyl acetate to remove any unreacted triphenylphosphine. The phosphonium salts, isolated in 85-90% yield, were recrystallized from chloroform/ethyl acetate. n-Propyltriphenylphosphonium iodide: mp 203-4°C (lit. 36 204°C). Its 14 H NMR: δ 7.90-7.75 (m, 15H), 3.59 (dt, 23 _{PH} = 12.5 Hz, 33 _{HH} = 8.2 Hz, 2H), \sim 1.74 (complex pattern, 2H), 1.26 (t, 33 _{HH} = 7.3 Hz, 3H). Isobutyltriphenylphosphonium iodide: mp 180-181°C (lit. 2 186-8°C). Its 14 H NMR: δ 7.96-7.70 (m, 15H), 3.56 (dd, 23 _{PH} = 12.8 Hz, 33 _{HH} = 6.3 Hz, 2H), \sim 2.15 (complex pattern, 1H), 1.08 (d, 33 _{HH} = 6.6 Hz, 6H). Anal. Calcd for C_3 - H_{24} IP: C_5 59.19; H, 5.38. Found: C_5 59.19; H, 5.32.

Preparation of Neopentyltriarylphosphonium Iodides (10-13)

Neopentyltriphenylphosphonium iodide (10) is a known compound. Other neopentylphosphonium salts were prepared as follows: A mixture of 0.01 mol of a triarylphosphine and 3.96 g (0.02 mol) of freshly distilled neopentyl iodide was heated under N_2 in a Wood's metal bath at 150°C for 6 h. The reaction mixture was then cooled to room temperature, and ca. 100 mL of ethyl acetate was added. On standing, phosphonium salts separated as white solids, which were collected by filtration. Analytical samples were prepared by recrystallization from chloroform/ethyl acetate.

Neopentyl-tris(p-toluyl)phosphonium iodide (11): yield 1.7 g (34%); mp. 201°C. Its ¹H NMR: δ 8.10–7.31 (m, 12H), 3.63 (d, ² J_{PH} = 12.9 Hz, 2H), 2.47 (s, 9H), 1.03 (s, 9H). Anal. Calcd for C₂₇H₃₂IP: C, 61.15; H, 6.37. Found: C, 61.54; H, 6.41.

Neopentyl-tris(p-methoxyphenylphosphonium iodide (12): The reaction was actually run for 18 h. Addition of 100 mL of ethyl acetate and 100 mL of anhydrous ether precipitated a mixture (4.3 g) of eight phosphonium salts.³⁵ No effort was made to isolate the above phosphonium salt in pure form; rather its spectral data (listed in Tables II and III) was obtained from the mixture itself.

Neopentyl-tris-p-dimethylaminophenyl)phosphonium iodide (13): yield 2.6 g (44%); mp 284°C. Its ¹H NMR: δ 7.78–6.56 (m, 12H), 3.05 (s, 18H), 3.02 (d, ${}^{2}J_{PH}$ = 12.8 Hz, 2H), 1.01 (s, 9H). Anal. Calcd for C₂₉H₄₁IN₃P: C, 59.08; H, 6.96. Found: C, 58.99; H, 6.88.

Preparation of (Trimethylsilyl)methyltriarylphosphonium Salts (14-17)

A mixture of 0.005 mol of a triarylphosphine and 4.28 g (0.02 mol) of (trimethyl)silylmethyl iodide was refluxed in 20 mL of dry benzene under N_2 for 16 h. The reaction was then cooled to room temperature, and a mixture of 50 mL of ethyl acetate and 50 mL of anhydrous ether was added. Phosphonium salts separated as white solids (60–80%) which were collected by filtration and handled under N_2 to minimize hydrolysis to the corresponding methyltriphenylphosphonium salts. Their spectra, run on samples as isolated, showed the presence of small amounts of the methyltriarylphosphonium salts as the hydrolysis by-products. Efforts to prepare pure samples of (trimethylsilyl)methyltriarylphosphonium salts by recrystallization from chloroform/ethyl acetate or chloroform/ether were unsuccessful. The samples still contained the methyltriarylphosphonium salts impurities, and sometimes more hydrolysis of (trimethylsilyl)methyltriarylphosphonium salts occurred during recrystallization.

Preparation of Mono-N-Substituted Aminotriphenylphosphonium Tetrafluoroborates (18-22)

These salts were prepared from the corresponding phosphonium bromides³⁷ by metathesis reaction with lithium tetrafluoroborate. Solutions of 0.02 mol of the respective phosphonium bromide and of 2.0 g (0.021 mol) of lithium tetrafluoroborate in minimum amounts of MeOH were mixed and stirred for 15 min. Methanol was then bulb-to-bulb distilled, and the remaining solid washed with water to remove LiBr. The phosphonium salts, after drying in a vacuum oven at 70°C, were isolated as white solid in essentially quantitative yield. Recrystallization from chloroform/ethyl acetate gave shiny crystals.

Aminotriphenylphosphonium tetrafluoroborate (18): mp 185–7°C (lit. 38 178°C). Its 1 H NMR: δ 7.76–7.53 (m, 15H), 5.61 (d, $^{2}J_{PH}$ = 3.5 Hz, 2H). Anal. Calcd for $C_{18}H_{17}BF_{4}NP$: C, 59.21; H, 4.66; N, 3.84. Found: C, 58.90; H, 4.58; N, 3.77.

Methylaminotriphenylphosphonium tetrafluoroborate (19): mp 125-6°C (same as lit.³⁹). Its ¹H NMR: δ 7.80-7.60 (m, 15H), 5.49 (dq, ${}^{2}J_{PH}$ = 8.6 Hz, ${}^{3}J_{HH}$ = 5.5 Hz, 1H), 2.77 (dd, ${}^{3}J_{PH}$ = 13.2 Hz, ${}^{3}J_{HH}$ = 5.5 Hz, 3H).

t-Butylaminotriphenylphosphonium tetrafluoroborate (20): mp 155-6°C (lit.³⁹ 169°C). Its ¹H NMR: δ 7.89-7.59 (m, 15H), 5.41 (d, ${}^2J_{PH} = 7.2$ Hz, 1H), 1.25 (s, 9H). Anal. Calcd for $C_{22}H_{25}BF_4NP$: C, 62.74; H, 5.95; N, 3.33. Found: C, 61.95; H, 5.95; N, 3.19.

Hydrazinotriphenylphosphonium tetrafluoroboroate (21): mp 188–9°C. Its 'H NMR: δ 7.79–7.60 (m, 15H), 7.09 (d, ${}^2J_{PH}$ = 25.8 Hz, 1H), 2.54 (s, 2H). Anal. Calcd for $C_{18}H_{18}BF_4NP$: C, 56.87; H, 4.74; N, 7.37. Found: C, 56.32; H, 4.56; N, 7.34.

2,2-Dimethylhydrazinotriphenylphosphonium tetrafluoroborate (22): mp 155-6°C. Its 1 H NMR: δ 7.80-7.60 (m, 15H), 6.94 (d, $^2J_{PH}=35.0$ Hz, 1H), 2.51 (s, 6H). Anal. Calcd for $C_{20}H_{22}BF_4N_2P$: C, 58.85; H, 5.39; N, 6.87. Found: C, 58.17; H, 5.47; N, 6.72.

X-ray Structure of 10

A colorless block with dimensions of $0.15 \times 0.16 \times 0.40$ mm obtained by recrystallization from chloroform/ethyl acetate was mounted on a glass fiber and placed on an Enraf-Nonius CAD4 diffractometer equipped with a Mo K α source, graphite monochromator, and an FTS low-temperature refrigeration unit operating at -70° C. The CAD4 routines indicated a monoclinic unit cell space group with dimensions a=10.578(9) Å, b=12.998(3) Å, c=16.269(10) Å, $\beta=106.44(6)^{\circ}$. With Z=4 the calculated density of $C_{23}H_{26}IP$ is 1.408 g/cc. A total of 2457 independent reflections with $I \ge 3\sigma(I)$ were obtained from $7.7^{\circ} \le 2\theta \le 54.7^{\circ}$ using the ω -scan mode with $\omega=0.8 \pm 0.35$ (tan θ). The structure was solved via the heavy atom Method and refined by using full matrix anisotropic least squares with 220 variables to a conventional R=4.7% and $R_{w}=4.2\%$. The solution required two independent ion pairs in the asymmetric unit. The enantiomorph chosen was that corresponding to the minimum R for the two possibilities. The largest peak on the final different map, $0.47 \, e/\text{Å}^3$ was general background.

X-ray Structure of 22

A colorless plate with dimensions of $-0.29 \times 0.09 \times 0.40$ mm obtained by recrystallization from chloroform/ethyl acetate was mounted on a glass fiber and placed on a Syntex R3 diffractometer

equipped with a Mo Ka source, graphite monochromator, and an LT1 low-temperature refrigeration unit operating at -90°C. The Syntex routine indicated a monoclinic unit cell space group P2₁/n with dimensions a = 10.256(3) Å, b = 13.710(4) Å, c = 14.389(5) Å, $\beta = 98.14(2)^\circ$. With Z = 4 the calculated density of $C_{20}H_{22}N_2PBF_4$ is 1.354/cc. A total of 4296 independent reflections with $I \ge 3\sigma(I)$ were obtained from $4.0^{\circ} \le 2\theta \le 52.0^{\circ}$ using the ω -scan mode. The structure was solved by direct methods (MULTAN)⁴⁰ and refined by full-matrix anisotropic least squares with 368 parameters to a conventional R = 5.7% and $R_w = 5.1\%$. The solution required one ion pair in a general position. The largest peak on a final difference map 0.36e/Å³ near N1.

Supplemental Material Available

Tables of X-ray data containing fractional coordinates, anisotropic thermal parameters, interatomic distances, and intramolecular angles for 10 (4 pages) and 22 (5 pages). Ordering information is given on any current masthead page.

ACKNOWLEDGEMENTS

I gratefully acknowledge the assistance of Fred Davidson in running the 15N NMR spectra, and Dr. Joseph C. Calabrese for the X-ray work. I also wish to thank Dr. Mark F. Teasley for his helpful comments on the manuscript.

REFERENCES AND NOTES

- 1. Part of this work was presented at the International Conference on Phosphorus Chemistry, Bonn, Germany, September, 1986.
- 2. J. B. Hendrickson, M. L. Maddox, J. J. Sims and H. D. Kaesz, Tetrahedron, 20, 449 (1964).
- 3. C. E. Griffin and M. Gordon, J. Organomet. Chem., 3, 414 (1965).
- 4. S. O. Grim, W. McFarlane, E. F. Davidoff and T. J. Marks, J. Phys. Chem., 70, 581 (1966).
- 5. T. A. Albright, W. J. Freeman and E. E. Schweizer, J. Am. Chem. Soc., 97, 2942 (1975).
- G. A. Gray, S. E. Cremer and K. L. Marsi, J. Am. Chem. Soc., 98, 2109 (1976).
 A. W. Johnson, "Ylides and Imines of Phosphorus," John Wiley & Sons, Inc., New York, 1993.
- 8. D. A. Dixon, in Reference 7.
- 9. J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York, 1972.
- 10. Reference 9, pp. 70-71.
- 11. T. A. Albright, W. J. Freeman and E. E. Schweizer, J. Am. Chem. Soc., 97, 940 (1975).
- 12. W. Luttke and K. Wilhelm, Agnew. Chem. Internat. Edit., 4, 875 (1965).
- 13. H. Lumbroso, J. Cure and H. J. Bestmann, J. Organomet. Chem., 161, 347 (1978).
- 14. S. O. Grim, W. McFarlane and T. F. Marks, Chem. Commun., 1191 (1967).
- 15. For a review, see B. E. Mann, in "Advances in Organometallic Chemistry"; F. G. A. Stone and R. West, Eds.; Academic Press, New York, 1974, pp. 135-213.
- 16. G. W. Smith, J. Chem. Phys., 39, 2031 (1963).
- 17. ${}^{2}J_{PH}$ is usually negative in alkylphosphonium salts, e.g., Ph₃PCH₃ I⁻ (-13.2 Hz)¹⁸ and (CH₃)₄P I (-14.6 Hz). With the increase in s character of the C—H bonds, the numerical values of ²J_{PH} decrease, i.e., increase in positive direction; see, e.g., Ph₃PCH₂OH Cl⁻ (0.0 Hz)²⁰ and Ph, PCH₂OCH₃ Cl⁻ (4.0 Hz).² Actually, (CH₃)₃ P=CH₂ ylid has ${}^2J_{PH}$ of +6.5 Hz.¹⁹ The ylid ¹³C—H coupling is 149 Hz, which calculates to 29.8% s character in its carbon orbitals according to the method of Juan and Gutowsky.21
- 18. S. L. Manatt, G. L. Juvinall, R. I. Wagner and D. D. Elleman, J. Am. Chem. Soc., 88, 2689 (1966).
- 19. H. Schmidbaur, W. Buchner and D. Scheutzow, Chem. Ber., 106, 1251 (1973).
- 20. D. W. Allen, I. T. Millar and J. C. Tebby, Tetrahedron Lett., 745 (1968).
- 21. ¹³C—H coupling has been related to the amount of s character in the carbon orbitals: %s character = J_{13C-H} (in Hz)/5; see C. Juan and H. S. Gutowsky, J. Chem. Phys., 37, 2198 (1962).
- 22. For a review of ²J_{PH} coupling constants in phosphonium salts, see M. J. Gallagher, Aust. J. Chem., 21, 1197 (1968).
- 23. F. J. Weigert and J. D. Roberts, Inorg. Chem., 12, 314 (1973).
- 24. G. J. Karabatsos, J. D. Graham and F. M. Vane, J. Am. Chem. Soc., 84, 37 (1962).
- 25. This is consistent with the transylidation between Ph₂P=CH₂ and Ph₂PCH₂C(CH₃), I which occurs quantitatively in favor of the formation of Ph₃P=CHC(CH₃),²⁶ indicating its greater stability due to the more effective ylid bond formation.

Downloaded At: 10:57 29 January 2011

- 26. D. Seyferth and G. Singh, J. Am. Chem. Soc., 87, 4156 (1965).
- 27. C. J. Fritchie, Jr., Acta Cryst., 20, 107 (1966).
- 28. G. Singh and H. Zimmer, J. Org. Chem., 30, 313 (1965).
- 29. Reference 7, p 415.
- (a) G. W. Koeppl, D. S. Sagatys, G. S. Krishnamurty and S. I. Miller, J. Am. Chem. Soc., 89, 3396 (1967); (b) C. H. Bushweller and J. W. O'Neil, ibid., 92, 2159 (1970); (c) M. J. S. Dewar and W. B. Jennings, ibid., 93, 401 (1971).
- 31. J. E. Anderson, D. L. Griffith and J. D. Roberts, J. Am. Chem. Soc., 91, 6371 (1969).
- 32. M. J. S. Dewar and W. B. Jennings, J. Am. Chem. Soc., 95, 1562 (1973).
- 33. For excellent recent reviews on the stereodynamics of amines and hydrazines see: (a) C. H. Bushweller, in "Acyclic Organonitrogen Sterodynamics"; J. B. Lambert, Y. Takeuchi, Eds.; VCH Publishers, Inc., New York, 1992, pp. 1-55; (b) S. F. Nelsen, ibid., pp. 89-121.
- 34. D. M. Doddrell, D. T. Pegg and M. R. Bendall, J. Magn. Reson., 48, 323 (1982).
- 35. G. Singh, J. Org. Chem., 52, 1647 (1987).
- 36. L. Horner and H. Moser, Chem. Ber., 99, 2789 (1966).
- 37. For original references, see G. Singh and H. Zimmer, Organomet. Chem. Rev., 2, 279 (1967).
- 38. R. Appel and A. Hauss, Z. Anorg. Allegem. Chem., 311, 290 (1961).
- 39. H. Zimmer and G. Singh, J. Org. Chem., 29, 3412 (1964).
- P. Main, L. Lessinger, M. W. Woolfson, G. Germain and J. P. Declerg, "MULTAN 78: A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data"; York, England, and Louvain-la-Neuve, Belgium, 1978.